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Ensemble Kalman Filter:Ensemble Kalman Filter:
status and new ideasstatus and new ideas

• EnKF and 4D-Var are in a friendly competition
• Jeff Whitaker results: EnKF better than GSI
• In Canada: 4D-Var & EnKF the same in the NH
and EnKF is better in the SH
• EnKF needs no adjoint model, priors, it adapts
to changes in obs, it can even estimate ob errors
• We take advantage of ideas and methods
developed for 4D-Var and easily adapt them into
the LETKF (Hunt et al., 2007)
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• radiosonde
temperature
observation at
500hPa

• observation at
middle of
assimilation
window (+0h)

• with same B,
increments
very similar
from    4D-Var,
EnKF

• contours are
500hPa GZ
background
state at 0h
(ci=10m)

Single observation experiments
Difference in temporal covariance evolution

contour plots at 500 hPa
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Forecast Results – 120h NH
EnKF mean analysis

vs. 4D-Var Bnmc
4D-Var Benkf

vs. 4D-Var Bnmc
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Forecast Results – 120h SH
EnKF mean analysis

vs. 4D-Var Bnmc
4D-Var Benkf

vs. 4D-Var Bnmc

stddev & bias 
relative to 
radiosondes
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Conclusions from a cleanConclusions from a clean
intercomparison of 4D-Var and EnKFintercomparison of 4D-Var and EnKF

((Buehner Buehner et al., Canada, 2008)et al., Canada, 2008)

  When running with the same (inner loop)When running with the same (inner loop)
model, same observations the forecast scoresmodel, same observations the forecast scores
of 4D-Var and EnKF, areof 4D-Var and EnKF, are  essentially identicalessentially identical
(February 2007).(February 2007).
  When BWhen BNMCNMC in 4D-Var replaced by  in 4D-Var replaced by BBEnKFEnKF  4D-4D-
Var AC improved in the SH by 10 hours Var AC improved in the SH by 10 hours   
 They will run an incremental EnKF (hi-res) so They will run an incremental EnKF (hi-res) so
the control models have same resolution!the control models have same resolution!
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WhitakerWhitaker:: Wind O-F 3-9hr statistics (all in situ data
aggregated in 100 mb layers, 20071208-20080131)

• EnKF significantly better in Tropics, SH above
boundary layer, NH upper trop and strat.
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Whitaker:Whitaker: 48-h wind forecasts verified
against operational ECMWF analyses
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Conclusions from a clean comparison ofConclusions from a clean comparison of
GSI and EnKF (Whitaker, Dec 08)GSI and EnKF (Whitaker, Dec 08)

  At T126/L64 resolution - 64 members - EnKF is clearly betterAt T126/L64 resolution - 64 members - EnKF is clearly better
than the operational GSI (same resolution) and it now takes only 4than the operational GSI (same resolution) and it now takes only 4
times longertimes longer
  Will test incremental EnKF at T382/L64Will test incremental EnKF at T382/L64

Conclusions from a clean comparison ofConclusions from a clean comparison of
JMA 4D-Var and LETKF (Miyoshi et al. 08)JMA 4D-Var and LETKF (Miyoshi et al. 08)
  At the same resolution LETKF is faster than the operationalAt the same resolution LETKF is faster than the operational
4D-Var, better in the tropics and NH, worse in SH4D-Var, better in the tropics and NH, worse in SH  due to a modeldue to a model
biasbias
  Will test simple low-dim method to correct model biasWill test simple low-dim method to correct model bias
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Some ideas to improve LETKF/EnKFSome ideas to improve LETKF/EnKF

We can adapt ideas developed within 4D-VarWe can adapt ideas developed within 4D-Var:
 No-cost smoother (Kalnay et al, Tellus 2007)
  “Outer loop” and nonlinearities (Yang and Kalnay)
 Accelerating the spin-up (Kalnay and Yang, QJ, subm.)
 Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008)
 Coarse analysis resolution without degradation (Yang, Kalnay, Hunt, Bowler,
QJ, in press)
 Low-dimensional model bias correction (Li, Kalnay, Danforth, Miyoshi,
MWR, submitted)
 Simultaneous estimation of optimal inflation and observation errors (Li,
Kalnay, and Miyoshi, QJ, in press).
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Some ideas to improve LETKF/EnKFSome ideas to improve LETKF/EnKF

We can adapt We can adapt ideasideas developed within 4D-Var developed within 4D-Var:
 No-cost smoother (Kalnay et al, Tellus 2007)
  “Outer loop” and nonlinearities (Yang and Kalnay)
 Accelerating the spin-up (Kalnay and Yang, QJ, subm.)
 Forecast sensitivity to observations (Liu and Kalnay, QJ, 2008)
 Coarse analysis resolution without degradation (Yang, Kalnay, Hunt,
Bowler, QJ, in press)
 Low-dimensional model bias correction (Li, Kalnay, Danforth, Miyoshi,
MWR, submitted)
 Simultaneous estimation of optimal inflation and observation errors (Li,
Kalnay, and Miyoshi, QJ, in press).

EnKF is new, simple, flexible, and there is aEnKF is new, simple, flexible, and there is a
whole community eager to test new ideaswhole community eager to test new ideas
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Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

• Model independent
(black box)
• Obs. assimilated
simultaneously at each
grid point
• 100% parallel: very fast
• No adjoint needed
• 4D LETKF extension

(Start with initial ensemble)

LETKFObservation
operator

Model

ensemble  analyses

ensemble forecasts

ensemble
“observations”

Observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

Localization based on observations
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

Localization based on observations

The LETKF algorithm can be described in a single slide!
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Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:
Analysis step: construct

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.
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The 4D-LETKF produces an analysis in terms of
weights of the ensemble forecast members at the
analysis time tn, giving the trajectory that best fits all
the observations in the assimilation window.

Analysis time
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

We can get the smoothed mean analysis (used for the
outer loop) and the smoothed analysis error
covariance (used for “Running in Place” to deal with
spin-up)
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No-cost LETKF smoother
test on a QG model: It works!

“Smoother” reanalysis

LETKF Analysis
xn
a
= xn

f
+ Xn

f
wn

a
LETKF analysis 

at time n

Smoother analysis 
at time n-1  

!xn!1
a

= xn!1
f

+ Xn!1

f
wn

a

This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis
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Nonlinearities and Nonlinearities and ““outer loopouter loop””

• The main disadvantage of EnKF is that it cannot handle
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

•• It doesnIt doesn’’t have the important outer loopt have the important outer loop  so important in 3D-so important in 3D-
Var and 4D-Var (DaSilva, pers. Var and 4D-Var (DaSilva, pers. commcomm. 2006). 2006)

Lorenz -3 variable model (Kalnay et al. 2007a Tellus), RMS
analysis error

4D-Var LETKF
Window=8 steps 0.31 0.30 (linear window)
Window=25 steps 0.53 0.66 (nonlinear window)

Long windows + Pires et al. => 4D-Var clearly wins!
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““Outer loopOuter loop”” in 4D-Var in 4D-Var
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Nonlinearities and Nonlinearities and ““outer loopouter loop””
Outer loop: similar to 4D-Var: use the final weights to

correct only the mean initial analysis, keeping the initial
perturbations. Repeat the analysis once or twice. It
centers the ensemble on a more accurate nonlinear
solution.

Miyoshi: Jaszwinski (1970) also suggested this “inner loop” in a footnote!

Lorenz -3 variable model RMS analysis error

4D-Var LETKF LETKF
+outer loop

Window=8 steps 0.31 0.30 0.27
Window=25 steps 0.53 0.66 0.48

“Running in place” further reduces RMS from 0.48 to 0.39!
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““Running in placeRunning in place””  to spin-up fasterto spin-up faster
Kalnay and Yang (2008)Kalnay and Yang (2008)

• 4D-Var spins-up faster than EnKF because it is a smoother: it
keeps iterating until it fits the observations within the
assimilation window as well as possible
• EnKF spins-up fast if starting from a “good” initial state, e.g.,
3D-Var, but needs also an ensemble representing the “errors of
the day”
• In a severe storm where radar observations start with the
storm, there is little real time to spin-up
• Caya et al. (2005): “EnKF is eventually better than 4D-Var”
(but it is too late to be useful, it misses the storm).
• Jidong Gao, (pers. comm. 2007): spin-up is the main obstacle
for the use of EnKF for storm prediction.
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Can we use the dataCan we use the data  more than once?more than once?

• Hunt et al., 2007: The background term represents
the evolution of the maximum likelihood trajectory
given all the observations in the past

• After the analysis a similar relationship is valid:

• From here one can derive the linear KF equations
• Also the rule: “Use the data once and then discard it”
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““Running in PlaceRunning in Place””: like the outer loop: like the outer loop
but updating also thebut updating also the  covariancecovariance

• EnKF is a sequential data assimilation system where, after the
new data is used at the analysis time, it should be discarded…

• only if the previous analysis and the new background are the
most likely states given the past observations.

• If the system has converged after the initial spin-up all the
information from past observations is already included in
the background.

• During spin-up we should use the observations repeatedly
if we can extract extra information. But we should avoid
overfitting the observations
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Running in Place algorithmRunning in Place algorithm

Cold-start the EnKF from any initial ensemble mean and random
perturbations at t0, and integrate the initial ensemble to t1. The
“running in place” loop with n=1, is:
a) Perform a standard EnKF analysis and obtain the analysis weights at tn,
saving the mean square observations minus forecast (OMF) computed by the
EnKF.
b) Apply the no-cost smoother to obtain the smoothed analysis ensemble at tn-

1 by using the same weights obtained at tn.
c) Perturb the smoothed analysis ensemble with a small amount of random
Gaussian perturbations, similar to additive inflation.
d) Integrate the perturbed smoothed ensemble to tn. If the forecast fit to the
observations is smaller than in the previous iteration according to some
criterion, go to a) and perform another iteration. If not, let                and
proceed to the next assimilation window.

t
n!1

" t
n
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Running in Place algorithm (notes)Running in Place algorithm (notes)

Notes:
c) Perturb the smoothed analysis ensemble with a small amount

of random Gaussian perturbations, a method similar to
additive inflation.

This perturbation has two purposes:
1) Avoid reaching the same analysis as before, and
2) Encourage the ensemble to explore new unstable directions

d) Convergence criterion: if

with                  do another iteration. Otherwise go to the next
assimilation window.

OMF
2
(iter) !OMF

2
(iter +1)

OMF
2
(iter)

> "

 ! ! 5%
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Results with a QG modelResults with a QG model

Spin-up depends on initial perturbations, but RIP works well even with
random perturbations. It becomes as fast as 4D-Var (blue). RIP takes only 2-
4 iterations.
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Results with a QG modelResults with a QG model

LETKF spin-up from random perturbations: 141 cycles.  With RIP: 46 cycles
LETKF spin-up from 3D-Var perts. 54 cycles.  With RIP: 37 cycles
4D-Var spin-up using 3D-Var prior: 54 cycles.

 LETKF  

Random initial ensemble  

LETKF 

B3DV initial ensemble 

LETKF, 

Random initial 

ensemble 

Variational 

 

 

No RIP With RIP  No RIP With RIP  
Fixed 10 

iterations RIP 

3D-Var 

B3DV 

4D-Var 

0.05B3DV 

Spin-up: 

DA cycles 

to reach 

5% error 

141 46 54 37 37 44 54 

RMS error 

(x10
-2

) 
0.5 0.54 0.5 0.52 1.16 1.24 0.54 
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Estimation of forecast sensitivity to
observations without adjoint in an

ensemble Kalman filter

Junjie Liu and Eugenia Kalnay
QJRMS October 2008
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Motivation: Langland and Baker (2004)

 The adjoint method proposed by Langland and Baker (2004) and Zhu and
Gelaro (2007) quantifies the reduction in forecast error for each individual
observation source

 The adjoint method detects the observations which make the forecast worse.

 The adjoint method requires adjoint model which is difficult to get.

AIRS shortwave 4.180 µm

AIRS shortwave 4.474 µm

AIRS longwave 14-13 µm

AMSU/A
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 Schematic of the observation impact on the reduction of
forecast error

The only difference between         and            is the assimilation of observations at 00hr.

 Observation impact on the reduction of forecast error:

(Adapted from Langland
and Baker, 2004)
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Test ability to detect the poor quality observation on
the Lorenz 40 variable model

 Like adjoint method, ensemble sensitivity method can detect the observation
poor quality (11th observation location)

 The ensemble sensitivity method has a stronger signal when the observation has
negative impact on the forecast.

Observation impact from LB (red) and from ensemble sensitivity method (green)

Larger random error Biased observation case
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Summary for forecast sensitivity to obs.

• Derived a formula to calculate the observation impact based on the
ensemble without using the adjoint model which usually is not available.

• The results based on Lorenz-40 variable model show that ensemble
sensitivity method without using adjoint model gives results similar to adjoint
method .

• Like adjoint method, ensemble sensitivity method can detect the
observation which either has larger random error or has bias. Under such
conditions, the ensemble sensitivity method has stronger and more accurate
signal.

• It provides a powerful tool to check the quality of the observations.
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• In EnKF the analysis is a weighted average of the forecast ensemble
• We performed experiments with a QG model interpolating weights

compared to analysis increments.
• Coarse grids of 11%, 4% and 2% interpolated analysis points.
• Weight fields vary on large scales: they interpolate very well

 

1/(3x3)=11% analysis grid

Coarse analysis with interpolated weights
Yang et al (2008)
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Weight interpolation versus Increment interpolation

With increment interpolation, the analysis is OK only with 50%
analysis coverage

With weight interpolation, there is almost no degradation!
LETKF maintains balance and conservation properties
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Impact of coarse analysis on accuracy

With increment interpolation, the analysis degrades
With weight interpolation, there is no degradation,

the analysis is actually better!
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Model error: comparison ofModel error: comparison of  methodsmethods
to correct model bias and inflationto correct model bias and inflation

Hong Li, Chris Danforth, Takemasa Miyoshi,
and Eugenia Kalnay. QJ (in press)
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Model error: If we assume a perfect model in EnKF,Model error: If we assume a perfect model in EnKF,
we underestimate the analysis errors (Li, 2007)we underestimate the analysis errors (Li, 2007)

imperfect modelimperfect model
(obs from NCEP- NCAR(obs from NCEP- NCAR
Reanalysis NNR)Reanalysis NNR)

perfect SPEEDY modelperfect SPEEDY model
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— Why is EnKF vulnerable to model errors ?

 In the theory of Extended Kalman
filter, forecast error is represented by
the growth of errors in IC and the
model errors.

 However, in ensemble Kalman filter,
error estimated by the ensemble
spread can only represent the first
type of errors.
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imperfect model
perfect model

Low Dimensional Method to correct the bias (Danforth et al, 2007)
combined with additive inflation

We compared several methods to handle
bias and random model errors
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Simultaneous estimation of EnKF inflation and
obs errors in the presence of model errors

Hong Li, Miyoshi and Kalnay (QJ, in press)

Any data assimilation scheme requires accurate statistics for the
observation and background errors (usually tuned or from gut feeling).
 EnKF needs inflation of the background error covariance: tuning is
expensive
 Wang and Bishop (2003) and Miyoshi (2005) proposed a technique to
estimate the covariance inflation parameter online. It works well if ob errors
are accurate.
 We introduce a method to simultaneously estimate ob errors and inflation.

We test the method for a perfect model and in the presence of model
random errors (it works very well) and model bias (not so well).
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Diagnosis of observation error statistics
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Diagnosis of observation error statistics

Here we use a simple KF to estimate both     and       online.!
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SPEEDY model: online estimated observational
errors, each variable started with 2 not 1.

The original wrongly specified R converges to the
correct value of R quickly (in about 5-10 days)
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Estimation of the inflation

Using a perfect R and estimating      adaptively
Using an initially wrong R and       but estimating them adaptively!

 

Estimated Inflation

!

After R converges, the time dependent inflation factors are quite similar 
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Tests with LETKF with imperfect L40 model:
added random errors to the model

 

Error 

amplitude 

(random) 

A: true !
o

2
=1.0  

(tuned) constant "  

 

B: true !
o

2
=1.0  

  adaptive "  

  

 C:  adaptive!
o

2
  

     adaptive "  

 

a   "   RMSE  "  RMSE "   RMSE !
o

2
 

4 0.25 0.36 0.27 0.36 0.39 0.38 0.93 

20 0.45   0.47 0.41 0.47 0.38 0.48 1.02 

100 1.00 0.64 0.87 0.64 0.80 0.64 1.05 

 

The method works quite well even
with very large random errors!
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Tests with LETKF with imperfect L40 model:
added biases to the model

The method works well for  low biases, but
not for large biases: Model bias needs to be

accounted by a separate bias correction

Error 

amplitude 

(bias) 

A: true !
o

2
=1.0  

(tuned) constant "  

 

B: true!
o

2
=1.0  

  adaptive "  

  

 C:  adaptive!
o

2
  

     adaptive "  

 

#   "   RMSE  "  RMSE "   RMSE !
o

2
 

1 0.35  0.40 0.31 0.42 0.35 0.41 0.96 

4 1.00  0.59 0.78 0.61 0.77 0.61 1.01 

7 1.50 0.68 1.11 0.71 0.81 0.80 1.36 
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SummarySummary

• EnKF and 4D-Var now give similar results in Canada and in
JMA (except for model bias)(Buehner et al, Miyoshi et al)

• EnKF is better than GSI with the same resolution model and
needs only 4 times more CPU (Whitaker)

• EnKF is simpler and more flexible than 4D-Var. Many new
ideas to further improve it have been tested in simple models:

– Smoothing and running in place
– A simple outer loop to deal with nonlinearities
– Adjoint sensitivity without adjoint model
– Coarse resolution analysis without degradation
– Correction of model bias combined with additive inflation gives the

best results
– Can estimate simultaneously optimal inflation and ob errors
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Has the time come to test EnKF in parallel?Has the time come to test EnKF in parallel?

• EnKF and 4D-Var now give similar results in Canada and in
JMA (except for model bias)(Buehner et al, Miyoshi et al)

• EnKF is better than GSI with the same resolution model and
needs only 4 times more CPU (Whitaker)

• EnKF is simpler and more flexible than 4D-Var. Many new
ideas to further improve it have been tested in simple models:

– Smoothing and running in place
– A simple outer loop to deal with nonlinearities
– Adjoint sensitivity without adjoint model
– Coarse resolution analysis without degradation
– Correction of model bias combined with additive inflation gives the

best results
– Can estimate simultaneously optimal inflation and ob errors
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Extra Slides on Low Dim Method
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• Generate a long time series of model forecast minus reanalysis
from the training period

2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)
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Bias removal schemes (Low Dimensional Method)
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Low-dimensional method

Include Bias, Diurnal and State-Dependent model errors:

Having a large number of estimated errors   allows to
estimate the global model error beyond the bias
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SPEEDY 6 hr model errors against NNR (diurnal cycle)

1987 Jan 1~ Feb 15

Error anomalies

•  For temperature at lower-levels, in addition
to the time-independent bias, SPEEDY has
diurnal cycle errors because it lacks diurnal
radiation forcing

Leading EOFs for 925 mb TEMP
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